Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions

نویسندگان

  • Bok Eum Kang
  • Bradley J. Baker
چکیده

An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antisera against a channel-forming 16 kDa protein inhibit dye-coupling and bind to cell membranes in Drosophila ovarian follicles.

In Drosophila ovarian follicles, communication via gap junctions can be observed between the oocyte and its surrounding follicular epithelium. In the present study, the intercellular exchange of the fluorescent tracer Lucifer Yellow was analysed following pressure-injections of five different sera or protein solutions into the oocyte of stage-10 follicles. Three of the tested sera are directed ...

متن کامل

Expression of gp91phox/Nox2 in COS-7 cells: cellular localization of the protein and the detection of outward proton currents.

We have reported previously that gp91phox, expressed in CHO (Chinese hamster ovary) cells, functions as a voltage-dependent proton channel. However, others have reported that COS-7 cells expressing gp91phox failed to exhibit outward proton currents, and concluded that gp91phox does not function as a proton channel. To investigate this clear difference in findings, we have examined the expressio...

متن کامل

Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx). Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of vario...

متن کامل

Upregulation of Connexins 30 and 32 Gap Junctions in Rat Hippocampus at Transcription Level by Chronic Central Injection of Lipopolysaccharide

Background: Gap junctions composed of connexins (Cx) are functional in cell defense by propagation of toxic/death molecules to neighboring cells. Hippocampus, one of the brain regions with particular vulnerability to damage, has a wide network of gap junctions. Functional response of astrocytic Cx30 and neuronal Cx32 to hippocampal damage is unknown. Methods: We infused lipopolysaccharide (LPS)...

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016